Article
Using the genome editing tool known as CRISPR, researchers were able to selectively silence two genes in HPV that are responsible for the growth and survival of cervical carcinoma cells.
Using the genome editing tool known as CRISPR, the Duke University researchers were able to selectively destroy two viral genes responsible for the growth and survival of cervical carcinoma cells, causing the cancer cells to self-destruct.
The findings, appearing online August 7 in the Journal of Virology, give credence to an approach only recently attempted in mammalian cells, and could pave the way toward antiviral strategies targeted against other DNA-based viruses like hepatitis B and herpes simplex.
"Because this approach is only going after viral genes, there should be no off-target effects on normal cells," said Bryan R. Cullen, Ph.D., senior study author and professor of molecular genetics and microbiology at Duke University School of Medicine. "You can think of this as targeting a missile that will destroy a certain target. You put in a code that tells the missile exactly what to hit, and it will only hit that, and it won't hit anything else because it doesn't have the code for another target."
Read the report here: http://bit.ly/1uFYVeP
Source: ScienceDaily