Article

Could GLP-1 RAs Improve COVID-19-Induced Pulmonary Arterial Hypertension?

Author(s):

Recent studies show that glucagon-like peptide-1 receptor agonists have anti-inflammatory effects in human and rodent pathological models, making them a potential therapeutic strategy for treating pulmonary arterial hypertension after COVID-19 infection.

Glucagon-like peptide-1 (GLP-1) is a hormone well-known for regulating blood sugar, and GLP-1 receptor agonists (GLP-1RAs) have been used in treatment for type 2 diabetes. But recent research shows that GLP-1RAs have anti-inflammatory effects in human and rodent models that might make them a novel therapeutic strategy for treating pulmonary arterial hypertension (PAH) after COVID-19 infection.

In many cases, patients with COVID-19 experience a cytokine storm — a systemic inflammatory syndrome caused by elevated levels of circulating cytokines. It is a leading cause of inflammatory lung damage, pneumonia, and death in COVID-19 patients. A recent article published in Medical Hypotheses noted that even in patients who recover from COVID-19, some studies show evidence of lung damage present after inflammatory biomarkers return to normal.

An autopsy of lung tissue from a COVID-19 patient revealed a thickened pulmonary vascular wall, which is a key characteristic of PAH. Therefore, author Jong Han Lee, of the Department of Marine Bio and Medical Science at Hanseo University in South Korea, presented the hypothesis that GLP-1RAs have the potential to play a role in combating COVID-19 in patients with characteristics of PAH.

Aside from the glycemic control that lends GLP-1RAs to diabetes treatment, the treatment has been shown to reduce circulating inflammatory biomarkers in patients with diabetes and obesity. In mouse and rat studies, GLP-1RAs have proven effective in reducing pulmonary inflammation, reducing cytokine production, and preserving lung function in those with lung injury. These studies suggest a potential role for GLP-1RAs in treating systemic inflammation and as a therapy for COVID-19 patients showing signs of PAH.

However, there is controversy around the use of GLP-1RAs in the COVID-19 treatment setting, “mainly because of its unstable therapeutic effects and the angiotensin-converting enzyme 2 (ACE2) upregulation induced by GLP-1RAs,” Lee noted. ACE2 allows virus entry into host target cells, but it may improve lung injury during COVID-19, and ACE2 overproduction may counteract the ACE2 decline typically seen as infections progress.

The leading cause of COVID-19 deaths is pulmonary insufficiency, and Lee cites reports that autopsies have shown thickened pulmonary vascular walls in patients who died from COVID-19. In lung injury rodent models, studies have shown GLP-1RAsreduce inflammation, cytokine production, and mucus secretion. Reports also show that GLP-1RAs improve lung function in patients with diabetes regardless of glucose levels, and therefore may directly affect lung tissue.

Further studies showed GLP-1 receptor overexpression can suppress cytokine release in chronic obstructive respiratory diseases, and preclinical studies suggest they reduce both cytokine production and lung inflammation. A study of 60-day mortality after a positive SARS-CoV-2 (the virus that causes COVID-19) polymerase chain reaction test showed GLP-1RAs reduce the rate of mortality. Another study found that GLP-1RAs did not increase respiratory tract infection and pneumonia risks in patients with cardiovascular comorbidities or type 2 diabetes.

If further clinical evidence supports the use of GLP-1RAs in alleviating PAH and inflammatory response in patients with COVID-19, it may hold promise in this treatment setting.

“Since signs of lung damage last longer, people with a history of SARS-CoV-2 infection are more likely to develop PAH in their future,” Lee wrote. “Therefore, apart from their lowering blood glucose effects, GLP-1RAs will be a new clinical option for the treatment of PAH at least due to its anti-inflammatory effects targeting lung tissue.”

Reference

Lee JH. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Med Hypotheses. Published online December 9, 2021. doi:10.1016/j.mehy.2021.110739

Related Videos
1 KOL is featured in this series.
1 KOL is featured in this series.
Justin Oldham, MD, MS, an expert on IPF
Mei Wei, MD, an oncologist specializing in breast cancer at Huntsman Cancer Institute at the University of Utah.
Dr Bonnie Qin
Screenshot of an interview with Ruben Mesa, MD
Justin Oldham, MD, MS, an expert on IPF
Ruben Mesa, MD
Amit Garg, MD, Northwell Health
4 KOLs are featured in this series
Related Content
AJMC Managed Markets Network Logo
CH LogoCenter for Biosimilars Logo